
International Journal of Computer Trends and Technology Volume 68 Issue 10, 14-20, October 2020

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V68I10P103 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

From Batter to Cake: Bake your Own

Security Model in API Management

BharathanKasthuriRengan

Principal Architect, Virtusa Corporation,65 W Newell Ave, Rutherford, NJ, USA.

Received Date: 13 September 2020

Revised Date: 16 October 2020

Accepted Date: 18 October 2020

Abstract - APIs' growth originates from an elementary need

for a better way to encapsulate and share information and

enable transaction processing between elements in the

solution stack. Unfortunately, APIs have often been treated

as tactical assets until relatively recently. The idea behind

APIs has existed since the beginning of computing; however,

in the last 10 years, they have grown significantly in number

and sophistication.

They are increasingly scalable, monetized, and ubiquitous,

with more than 12,000 listed on the Web, managing a global

API directory.

Defining API security is more than a strategy, as it has to

have an immediate impact through the tactical solution.

Defining a key security framework extending the API

Management platform's vendor products is key to API

adoption success.

This whitepaper covers the security framework guidelines,

reference implementation (end to end from API development

to deployment and governance) for a large enterprise.

Keywords - API Security, Custom Security, API

Management, API Governance, API Gateway

I. INTRODUCTION
 The idea behind APIs has existed since the beginning of

computing; however, in the last 10 years, they have grown

significantly in number and sophistication. They are

increasingly scalable, monetized, and ubiquitous, with more

than 12,000 listed on ProgrammableWeb, which manages a

global API directory.

Future-looking scenarios involving smartphones, tablets,

social outlets, wearables, embedded sensors, and connected

devices will have inherent internal and external dependencies

on underlying data and services. APIs can add features,

reach, and context to new products and services or become

products and services themselves.

A. Evolution of APIs

 The idea behind APIs has existed since the beginning of

computing; however, in the last 10 years, they have grown

significantly in number and sophistication. They are

increasingly scalable, monetized, and ubiquitous, with more

than 12,000 listed on ProgrammableWeb, which manages a

global API directory.

Source:http://www.programmableweb.com accessed January 7,

2015.

1960–1980 1980–1990 1990–2000 2000-Today
Basic

interoperabi

lity enables

the first

programmat

ic

exchanges

of

information

Creation of

interfaces

with function

and

logic.Object

brokers,

procedure

calls, and

program calls

New platforms

enhance

exchanges

through

middleware.

Interfaces

begin to be

defined as

services.

Businesses

build APIs

to enable

and

accelerate

new service

development

and

offerings.

Techniques

ARPANET,

ATTP, and

TCP

sessions

Techniques

Point-to-

point

interfaces,

screen

scraping,

RFCs, and

EDI.

Techniques

Enterprise

service bus

and service-

oriented

architecture

Techniques

Integration

as a service,

RESTful

services,

API

management

B. Three Major Pillars-API Adoption
Given the future of API and its impact on the economy,

investing in an API management platform is critical to any

enterprise's success.

(3) Three important pillars are crucial for the success of API

adoption.

BharathanKasthuriRengan / IJCTT, 68(10), 14-20, 2020

15

 Create, govern, and deploy APIs: versioning,

discoverability, and clarity of scope and purpose

 Secure, monitor, and optimize usage: access control,

security policy enforcement, routing, caching,

throttling (rate limits and quotas), instrumentation,

and analytics

 Market, support, and monetize assets: manage sales,

pricing, metering, billing, and key or token

provisioning

C. Critical Pillar- Security

 API security should be an integral part of an API

implementation, and achieving this requires a specific view

of architecture.

API gateways allow developers to encapsulate an

application's internal structure in multiple ways depending

upon the use case. In addition to accommodating direct

requests, gateways can invoke multiple back-end services

and aggregate the results.

Following are the critical focus areas of API security

 Enhance API lifecycle management, including

publishing, Monitoring, protecting, analyzing,

monetizing, and engaging the community.

 Protect APIs from network threats, including denial-

of-service (DoS) attacks and common

scripting/injection attacks through a web application

firewall (WAF)

 Protect data from being aggressively scraped by

detecting patterns from one or more IP addresses

through anti-farming/bot security

 Distribute cached content to the edge of the Internet,

 Manage identity, authentication, and authorization

services, often through integration with API gateway

and management layers via Identity Providers (IdP)

 Perform thorough security assessment for existing and

new build APIs to identify vulnerabilities before

release across technical and business aspects. API

security assessments consistently use globally
accepted and industry-standard frameworks.

API security architecture (in figure – 2) illustrates the

components and the layers of security.

 Fig. 2 – API Security (Component) Architecture

D. Custom Security for APIs in Nutshell

 For large enterprises, API security vendor solutions are

not an exact fit for their risk exposure as they differ subtly

across the organization.

The risks associated are different across the business

portfolio, even within the Enterprise.

It is not like "one size fits all," as they bind heterogeneous

solutions. Some of the API security can span over networks,

layers, data, and applications. The industry is governed by a

global regulatory body that enforces what kind of data, who

has access, what was done, information to be shared and

tracked (audit trail).

This forces enterprises to think beyond vendors' traditional

solutions, track end-to-end transaction lifecycle, audit

reports, mask sensitive information, and log retention of 10+

years of transactions.

Considering the situation, it is worth considering building

one's custom policy, Monitoring, and management layers

over and beyond vendors. Some custom security policies or

implementations are highlighted below:

E.API Development

 Identity Management (IM) in conjunction with API

Management

 Deep entitlements for critical operations in transaction

management (Admin functions, supervisory roles at the

store, to override standard functions)

 API portal functions (to publish and subscribe APIs

with an integrated workflow for customer-facing APIs)

management, control panes of API management

BharathanKasthuriRengan / IJCTT, 68(10), 14-20, 2020

16

 API gateway security policy customizations (OAuth

scopes with custom grant type handler over and beyond

general grant types, hybrid scenarios (On-Prem and On

Cloud functions where there can be providers and

consumers on both ends) – data panes

 Masking of CII data, encryption of data (sensitive data

on APIs) at run time – purely dynamic considering the

nature of business – Layer 7 security

 DAST and SAST – dynamic security testing of APIs

and applications as part of the development lifecycle.

F. API Governance

 Active Monitoring (configured alerts) of user

management provisioning of users on demand by privileged

users

 Successful and failure login (by privileged and normal

users) in API portal, Admin portals (Provisioning of

users (non-admin) by admin users in APIM context

which could be, organization-wide roles, intra

organization roles, deputy organization admin roles, the

entitlement carefully crafted by the super admin

 User to roles and resource management with a detailed

report on usage (dynamic) specific to API

 Log management (clean up, audit log malware, etc.) of

Identity providers, APIM

 Event management (import /export of users, role

management, dynamic client registration, secret

management) on APIM

 Secure certificate management - API management and

back end services

 Master configurations of API management (proxy,

identity roles, user, LDAP configuration).

G. API Promotion
 Promotion of API from the development environment to

production (where external partners consume it

In the next few sections of the whitepaper, we are going to

see how do we implement the above (a-f scenarios) from

defining policies, implementing them, governing them

(through Monitoring, enforcement, alerts) at the API

management platform (API portal, API policy manager, API

Gateway layers).

This white paper is focused on building your multi-layer

security model that provides advanced security for enterprise

APIs.

H. Extensions to API Gateway Security

 Along with the Identity Access Management platform,

Enterprise can define OAuth scopes for an individual

resource inside API (as security definition), thereby

providing an additional security layer.

Define custom grant type on Token Provider endpoint to

implement custom security solution so that highly secured

APIs, only applications registered with this custom grant

type, are provided access to these APIS.

Custom OAuth token provider with a custom solution that

generates OAuth token (with OAuth scopes as eligible

claims) as an exchange for JWT token (with requested

scopes) from the Identity Access Management solution.

I. Extensions to API Publisher Security

 API Publisher portal provides individual API designers

with the ability to work and update Swagger /Open API

with multiple endpoints, define the models and payload.

However, this may not align with enterprise guidelines.

Designers submit the new API definition or a new API

version to the organization to address this. Every

department within the organization can have its

workflow, including its security policy. For the New

API version, there can be 1 level of approval. There can

be 0 or 1 approval to edit existing API based on major,

minor, or revision of API.

 b. API administrators (for every sub-organization)

review new API definitions, API versions and either

approve or deny API.

 c. Customize security policy so that every sub

organization can leverage and share client credentials

instead of user-level credentials.

 d. Create tenants for every department in an

organization. Set new policies for every department in

an organization with a specific role call out like

publisher, import/export, subscription, etc.

 e. Define Grant types, Token expiration time,

JWT/OAuth token type at either application/user level

for every Tenant.

 f. For any API to be crossly subscribed by other

departments, it would involve additional API owners'

approval.

 g. Auto subscription of applications (owner department)

to its APIs.

 h. Create user segmentation, approve API organization,

API, versions, and user access to provide specific

entitlements.

J.Extensions to API Policy Manager Security

 Provide rate limiting and throttling (Traffic Manager) on

JWT, OAuth token claims. Rate limits can be provided

based on individual user, department, role.

 Provide application level throttling in addition to the

API level. Every department can be provided specific

API access (like 1000 requests per day to 5000 requests

per day based on department).

K. Masking and Encryption of data at Transit, ReST- API

Security

 Define sensitive data at API definition, at the

implementation level (Service Provider), and provide

masking requirements wherever possible.

BharathanKasthuriRengan / IJCTT, 68(10), 14-20, 2020

17

 Other sensitive information can be scattered around

logs, database end. This can be encrypted and can be

decrypted for further processing.

L. API Security testing with SAST, DAST
 Integrate with CI/CD pipeline, check for SAST, DAST

testing during APIs onboard, and back end services.

Check on back end services dependencies, root-level

access, API metadata storage in Persistent Volume, API

secrets management with PaaS

M. Implementation

 Extend the API policies and API portal capabilities to

provide coarse-grained, fine-grained API restricted access

to critical resources. This can be an additional layer of

security.

a) Custom JWT Handler

 Enterprise can define OAuth scopes for an individual

resource inside API (as security definition), thereby

providing an additional layer of security

 New custom grant types can be mapped to the API

gateway to build our solution. Following are the allowed

grant types in a typical OAuth provider

1. Authorization code

2. Refresh Token

3. Password

4. Client credentials

5. JWT

This new grant type can be built as an exchange of tokens

(JWT) from IAM, with eligible OAuth scopes specific to

each user to return OAuth 2 tokens.

The API gateway exposes a token provider endpoint with a

custom grant type to return OAuth 2 tokens.

 Only specific API Management Applications can access

these custom grant types. We can configure specific

applications (client credentials) to these grant types.

 API gateway provides extensive support on advanced

traffic policies. Most of the traffic management policies

are out of the box. However, we can build customized

solutions such as fine-grained policies to allow requests

based on

JWT claims -> throttle limits based on claim name,

value. E.g., we want to allow user claims which have a

department matching specific values, let's say IT, which can

be granted 2500 requests/hour. However, we want to allow

traffic to APIs for a department like the front office, 500

requests/hour. Such advanced throttling policies.

For internal staff, administrators, we want to provide

privileged access to 3000 requests/hour (or higher as an

example). This can be based on an additional service token

on the request header specific to each backend service and

API. These service tokens can be added on demand by API

gateway based on granular entitlements.

 Fig. 3 Grant type

b) Mediation Policy Support

We can build custom mediation rules for inbound and

outbound traffic from/to the gateway. We can add the default

mediation policies to add specific ones suitable to each one,

and if we want to propagate the header to back end services,

it can be done by changing the mediation policies (refer to

Fig.4)

 Fig. 4 Mediation Policy

 Back end services are routed through API Gateway;

however, API consumers can pass on Mutual TLS cert

to API gateway

1. API manager to have the public key of the

back end in the trust store.

2. Back end service should have the API

manager of the trust store.

 Generate the keys for the back-end.

keytool -Keystore back-end.jks -genkey -alias back-end

 Export the certificate from the key store

keytool -export -Keystore back-end.jks -alias back-end -file

back-end.crt

 Import the generated back-end certificate to the API

Manager trust store

keytool -import -file back-end.crt -alias backend -

Keystore /valid_jks_store/client-trust store.jks

BharathanKasthuriRengan / IJCTT, 68(10), 14-20, 2020

18

 Export the public certificate from the API Manager's

key store.

keytool -export -Keystore wso2carbon.jks -alias

covid2020 -file wso2PubCert.cert

 Import the generated certificate to your back-end

truststore

keytool -import -file puberty.crt -alias wso2carbon -

Keystore backend-truststore. .jks

c) API Publisher Security

 API Designer creates either a New API or version of the

existing API in the Developer portal. However, it is still

not visible to any community, as the API administrator

disapproves of that department.

 API administrators (for every sub-organization) review

new API definitions, API versions and either approve or

deny API by running it against enterprise standards.

 Customize security policy so that every sub organization

can leverage and share client credentials instead of user-

level credentials.

 Create tenants for every department in an organization.

Set new policies for every department in an organization

with a specific role call out like publisher, import/export,

subscription, etc.

 Define Grant types, Token expiration time, JWT/OAuth

token type at either application/user level for every

Tenant.

 For any API to be crossly subscribed by other

departments, it would involve additional API owners'

approval.

 Auto subscription of applications (owner department) to

its APIs.

 Create user segmentation, approve API organization,

API, versions, and user access to provide specific

entitlements.

Fig. 5 API Publisher Workflow Strategy

d) Masking and Encryption of CII Data

 Define sensitive data at API definition, at the

implementation level (Service Provider), and provide

masking requirements wherever possible. This is

implemented as a cross-cutting concern (AOP).

 Define custom JSON annotation for sensitive fields in

the Swagger/Open API definition. This needs to be

defined by the API designer.

Sensitive fields need to match with the data dictionary of

sensitive fields across the organization

API administrator/owner validates the API against

sensitive fields (data dictionary) and approves the same.

API gets published to the API repository.

Masking can be applied in the same format as the real

value, e.g. if its social security number xxx-xx-xxxx and

date of birth can be XX/XX/XXXX, and regular

expressions can be applied at the front gate (API

gateway)For Back end services, typically, any

microservice can have an Annotation Processor library,

which could look at Annotations in implementation and

do masking on demand (using JSON Serializer)

 Other sensitive information can be scattered around logs,

database end. This can be encrypted and can be

decrypted for further processing.

All API manager platform audit logs can be masked or

encrypted with the same Serializer. This needs a customized

Masking library, which can be a mediation

policy/configuration.

Fig. 6 – Masking of CII data in APIM

e) API Security testing with SAST and DAST

Integrate with CI/CD pipeline, check for SAST, DAST

testing during APIs onboard, and back end services.

 Check on back end services dependencies, root-level

access, API metadata storage in Persistent Volume, API

secrets management with PaaS

 Static Application Security Testing (SAST) tools use a

white box testing approach to identify the vulnerabilities.

SAST tools are designed to analyze the application's source

BharathanKasthuriRengan / IJCTT, 68(10), 14-20, 2020

19

code and spot potential issues in the early development

stages. This can be leveraged for API – contracts and back-

end services.

DAST (Dynamic Application Security Testing) tests it

from both API and back end services from a black-box

perspective. This tracks the attack vectors on the application

and APIs. This can cover SQL Injections, XSS, SSRF out of

the box, but we can customize it to provide synthetic attacks

(with a valid token) on back end services.

Fig. 7 SAST and DAST with SDLC

f) API Promotion Security Implementation

Enterprises leverage approval workflow within the

department or sub-organization to create a new version, API

to lower environment. However, enterprises want to leverage

CI/CD pipeline (zero human intervention) and promote APIs

for a higher environment.

 The CI/CD pipeline is highly secured, with access to

only IT teams to initiate the pipeline. Leverage CLI to

deploy API to target API server from source (lower)

using the import-export feature.

 During the promotion, there is the ability to change the

API owner specific to each environment. API owners

could be service accounts for each environment.

 Subscription of API's is controlled as in lower

environments and carried forward to higher

environments.

 For PROD and DR (Disaster Recovery), client

credentials can be the same.

The following illustration depicts the proposed security

model (highlighted in yellow) with the import /export

feature.

All the client credentials are stored in a Secured Vault,

provisioning of the APIM platform is integrated with secure

fault.

Fig. 8 API Promotion Security

II. CONCLUSION

 API has taken centre stage in digital transformation for

enterprises now. Being a business enabler has a way of

delivering business capabilities to its customers, partners,

and internal users.API security is one of the key success

factors for large enterprises, as it is a multi-fold

implementation (apps, data, network, user identity, roles –

user segmentation). A large enterprise's need extends beyond

vendor products (in API management) and customizes the

same through the API security framework. A well-defined

security framework and API management platform (vendor-

provided capabilities) can take enterprises long in API

adoption and a successful digital transformation journey.

REFERENCES

[1] ProgrammableWeb,

http://www.programmableweb.com

[2] Gartner Reports of APIM

[3] SAST, DAST Medium post for reference

[4] https://medium.com/e-t/sast-vs-dast-understanding-the-

differences-between-them-406c21d95c79

[5] http://www.internationaljournalssrg.org/ssrg-

journals.html

[6] Basic Grant type OAuth reference

[7] https://oauth.net/2/grant-types/

[8] WSO2 promotion for reference

[9] https://wso2.com/library/webinars/automated-api-

provisioning-and-promotion-through-cicd/

http://www.programmableweb.com/

